Redistribution of trace gases by convective clouds – mixed-phase processes

نویسندگان

  • Y. Yin
  • K. S. Carslaw
چکیده

The efficiency of gas transport to the free and upper troposphere in convective clouds is investigated in an axisymmetric dynamic cloud model with detailed microphysics. In particular, we examine the sensitivity of gas transport to the treatment of gas uptake by different ice hydrometeors. Two parameters are used to describe this uptake. The gas retention coefficient defines the fraction of dissolved gas that is retained in an ice particle upon freezing, which includes also the riming process. We also define a gas burial efficiency defining the amount of gas entrapped in ice crystals growing by vapour diffusion. Model calculations are performed for continental and maritime clouds using a complete range of gas solubilities, retention coefficients and burial efficiencies. The results show that the magnitude of the gas retention coefficient is much more important for gas transport in maritime clouds than in continental clouds. The cause of this difference lies in the different microphysical processes dominating the formation and evolution of hydrometeors in the two cloud types. For highly soluble gases, the amount of gas transported to the free troposphere in maritime clouds falls approximately linearly by a factor of 12 as the retention coefficient is varied between 0 and 1. Gas transport is relatively insensitive to the magnitude of the gas burial efficiency. However, the burial efficiency strongly controls the concentration of trace gases inside anvil ice crystals, which subsequently form cirrus clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace gas transport in liquid phase convective clouds

Trace gas transport in liquid phase convective clouds Yin et al.

متن کامل

Trace gas transport in mixed-phase convective clouds

The efficiency of gas transport to the free and upper troposphere in convective clouds is investigated in an axisymmetric dynamic cloud model with detailed microphysics. In particular, we examine the sensitivity of gas transport to the treatment of gas uptake by different ice hydrometeors. Two parameters are used to describe this uptake. The 5 gas retention coefficient defines the fraction of d...

متن کامل

Simulation of trace gas redistribution by convective clouds – Liquid phase processes

A two-dimensional dynamic cloud model with detailed microphysics and a spectral treatment of gas scavenging was used to simulate trace gas vertical redistribution in precipitating continental and maritime clouds. A general picture of gas transport in such clouds has been developed by examining the sensitivity to a range of parameters, including cloud dynamic and microphysical structure, gas sol...

متن کامل

AMSU-B Observations of Mixed-Phase Clouds over Land

Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption...

متن کامل

Model sensitivity studies regarding the role of the retention coefficient for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems

The role of the retention coefficient (i.e. the fraction of a dissolved trace gas which is retained in hydrometeors during freezing) for the scavenging and redistribution of highly soluble trace gases by deep convective cloud systems is investigated using a modified version of the Weather Research and Forecasting (WRF) model. Results from cloud system resolving model runs (in which deep convect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002